Welcome to eSessions

This session contains audio.
Review the information on each slide before continuing.
TROUBLESHOOTING MNC COLLECTION PROCEDURES

COBE® SPECTRA APHERESIS SYSTEM

Click here to begin
Getting Around

Click on these **TABS** to change the view of the left sidebar:

- **OUTLINE** shows links to each slide.
- **THUMBNAILS** shows a small image of each slide.
- **SEARCH** allows you to search the eSession by keyword(s).

This button toggles between PLAY and PAUSE. Click the PLAY button to continue.

Go to PREVIOUS screen.

Click this icon to toggle between FULL SCREEN and STANDARD view.

Go to NEXT screen.
Presentation Overview

- Patient/donor considerations
- Procedural adjustments
- Troubleshooting
- Resources
Presentation Objectives

Participants will be able to:

- State the first action to take when a patient or donor has a citrate reaction
- Describe the effect that increasing the Inlet:AC ratio has on the extracorporeal circuit and on the collected product
- List two potential causes of interface instability
- List two potential causes of a low CD34+ cell yield
PATIENT/DONOR CONSIDERATIONS
Patient/Donor Considerations

- Diagnosis
- Medical history and present condition
 - Current disease state
 - Lab values: Hct/Hgb, electrolytes, coagulation profile, proteins
 - Medications
Citrate Toxicity

Potential reasons for patient/donor citrate toxicity include:

- Citrate infused faster than metabolized
- Low levels of ionized calcium, magnesium, and/or potassium
- Poor nutritional status
- Kidney or liver impairment
- Large-volume leukapheresis
Preventing Citrate Toxicity

- Understand the physiological effect an apheresis procedure can have on a patient or donor
- Know the individual’s history, including diseases, medications, and lab data
- Have a plan for preventing citrate infusion-related symptoms
- Be prepared if symptoms occur anyway
Citrate Reaction

- Pause the procedure.
- Decrease the inlet pump flow rate
- Consider IV electrolyte supplementation (calcium, magnesium, potassium)
PROCEDURAL ADJUSTMENTS
Increasing the Inlet Flow Rate

- Blood processed
- Inlet flow rate
- Time
- AC infusion rate
- Citrate toxicity
Increasing the Inlet:AC Ratio

- Inlet flow rate increases
- Clumping in the circuit and the product

- Time decreases
- Same AC infusion rate

Inlet:AC ratio
Changing the Plasma Flow Rate

- Monitor the interface
- Make appropriate changes
Interface Control

Make incremental changes to the plasma pump flow rate. Allow 3 to 5 minutes between changes.

- If the color is too light, increase the plasma flow rate
- If the color is too dark, decrease the plasma flow rate
- Make larger changes (~1 mL/min) if the interface is either too low or too high
- Make smaller changes (~0.3-0.5 mL/min) if the interface is almost on target
TROUBLESHOOTING
Potential Conditions

- Unstable interface
- Platelet aggregation
- High cross-cellular contamination
- Low CD34+ cell yield
Unstable Interface

- **Cause**
 - Low access pressure

- **Management**
 - Obtain and maintain good venous access
 - Keep the patient warm
 - Use the appropriate inlet flow rate
Unstable Interface (continued)

- **Cause**
 - Poor mobilization or poor separation

- **Management**
 - Change the plasma flow rate to an appropriate rate
 - Check pre-CD34+ cell count to determine if the patient has mobilized
 - Increase the separation factor to about 800 to 900 (will result in an increased platelet loss and increased platelet contamination)
Separation Factor*

The separation factor is a function of channel dwell time and centrifugal force

*Separation factor for MNC procedures is 500
Unstable Interface

- **Cause**
 - Platelet aggregation

- **Management**
 - Provide appropriate amount of anticoagulation
Platelet Aggregation

- Causes
 - Inadequate anticoagulation
 - Use of heparin as anticoagulant

- Management
 - Provide adequate amount of anticoagulation*
 - Use ACD-A instead of heparin

*According to the COBE Spectra system operator’s manual: Decrease ratio to as low as 9:1 if the platelet count and hematocrit are normal or high; increase ratio to as high as 15:1 if platelet count and hematocrit are low.

*According to the literature: Use AC/heparin mix (e.g. 5,000 IU of preservative-free heparin per 500 mL ACD-A), using ratios as high as 30:1 and adding about 10% ACD-A to the collect bag.
High Cross-Cellular Contamination

- **Cause**
 - Unstable interface

- **Management**
 - Achieve a stable interface
 - Increase the separation factor to about 800 to 900 (will result in increased platelet loss and increased platelet contamination)
High Cross-Cellular Contamination (continued)

- **Cause**
 - Higher platelet contamination from collecting too light*

- **Management**
 - Collect darker

Collect line Hct has only a small effect on platelet contamination of the collected product
High Cross-Cellular Contamination (continued)

- **Cause**
 - High RBC contamination from collecting too dark

- **Management**
 - Collect lighter

NOTE: Collect line Hct in the range of 2%-8% has little effect on granulocyte contamination of the collected product.
Interface Control

Interface too dark:
Collecting too deep in the RBC layer
- ↓ plasma pump flow rate.

Interface too light:
Not collecting deep enough in the RBC layer
- ↑ plasma pump flow rate.
Low CD34+ Cell Yield

- Causes
 - Collecting in the wrong layer
 - Unstable interface
 - Low patient pre-CD34+ cell count
 - Processing an inadequate amount of blood
Low CD34+ Cell Yield (continued)

- **Management**
 - Collect at an Hct of 4% to 5%
 - Maintain a stable interface
 - Check pre-CD34+ count to determine if patient has mobilized
 - Process at least 2 x TBV, and consider large-volume leukapheresis
 - Adjust collect flow rate based on inlet flow rate and MNC count
KNOW YOUR RESOURCES!

Click here to continue
Resources

- Terumo BCT 24-hour support line: 877.339.4228
- Other COBE Spectra system operators
- Apheresis resources:
 - Apheresis Principles and Practice (text)
 - Transfusion (journal)
 - Journal of Clinical Apheresis (journal)
 - Principles of Apheresis Technology (ASFA)
Reference